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In order to establish the generality of the concepts described 
in this paper, the oxidation of a cadmium amalgam in benzene 
containing 0.2 M [NHx4][ClO4] or 0.2 M [NHx4][PF6] was 
examined. Benzene has a lower dielectric constant than CH2Cl2 

and is a nonpolar molecule. Thus, it would be expected to be even 
more weakly coordinating than CH2Cl2. With [NHx4] [ClO4] as 
the electrolyte, an El/2 value of 0.77 V was obtained versus 
[CoCp2]/[CoCp2]+. This can be compared with a value of 1.45 
V obtained in [NHx4] [PF6]. Even in the presence of electrolyte, 
the benzene solution is of very high resistance, and all E^2 values 
are affected by ohmic iR drop. This factor precludes quantitative 
calculations of solution equilibria as was possible in CH2Cl2. 
However, the relative value of EXj2 in [004]"-containing elec­
trolyte being 600-700 mV more negative than that in [PF6]"-
containing electrolyte confirms that perchlorate is a much better 
ligand than hexafluorophosphate and that the combination of a 
poorly coordinating solvent, benzene, and a weak ligand [PF6]" 
leads to an extremely positive E1^2 value for the Cd2+/Cd(Hg) 
redox couple. 

The above data imply that in CH2Cl2 and benzene a highly 
activated metal ion is produced. This hypothesis is further sup­
ported by experiments in which dimethyl sulfoxide (0.1 M) was 
added to CH2Cl2 containing [NBu4][PF6] (0.2 M). Negative 
shifts in E^2 of 480, 440, and 160 mV were observed for data 
obtained at Cd, Pb, and Tl amalgam electrodes, respectively, versus 
the data obtained in CH2Cl2 containing [NBu4] [PF6] only (Table 
I). The shifts are attributable to the strong complexation of 

I. Introduction 
The study of chemical reactions in solution has attracted sig­

nificant theoretical interest in recent years (ref 1-26 provide a 
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dimethyl sulfoxide relative to dichloromethane. 

Summary 

The electrochemical oxidation of Cd, Pb, and Tl mercury 
amalgam electrodes in noncoordinating media such as chlorinated 
or aromatic hydrocarbon solvents generates a highly activated form 
of the metal ion, which is strongly complexed by both [ClO4]" 
and [BF4]", anions that are normally regarded as noncoordinating 
ligands. Thus, if ligands can react at the electrode surface faster 
than the kinetics of precipitation, then a pathway to previously 
unknown complexes is available. The identification of soluble 
[Cd(ClO4),]2", [Cd(BF4)3]", [Pb(C104)3]", Pb(BF4)2, Tl(ClO4), 
and Tl(BF4) complexes in dichloromethane is an example of new 
complexes as is the facile electrochemical synthesis of nonsolvated 
Cd(BF4)2. 
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partial list of works and emphasize studies of charge-transfer 
reactions). This interest reflects in part the realization that many 
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Abstract: The energetics and dynamics of the SN2 class of reactions in aqueous solution are studied by a combination of the 
empirical valence-bond (EVB) method and a free energy perturbation technique. The solvent is represented by the sur­
face-constrained all-atom solvent (SCAAS) model, and many-body interactions are taken into account with a solvent parameter 
set that includes atomic polarizabilities. The EVB representation of the reaction conveniently incorporates the effect of the 
solvent reaction field on the polarization of the solute. The calculations evaluate the activation free energies for the X" + 
CH3Y —• XCH3 + Y" reactions and explore the general relationship between the reaction free energies (AG0) and the solvent 
contribution to the activation free energies (Ag-*). The simulated free energy relationship is similar to Marcus' macroscopic 
formula, provided that the relevant reorganization energy is estimated from the microscopic simulation. The dynamical aspects 
of the SN2 charge-transfer reaction are examined by propagating trajectories downhill from the transition state and by using 
the linear response theory. It is found that the rather complicated solute-solvent coupling must be included in a consistent 
way in order to explore the nature of the reactive trajectories. The simulations indicate that the solvent fluctuations play a 
major role in driving the system toward the transition state and that the relaxation time for the reactive fluctuations is determined 
by both the polarization time of the solute dipole moment and the dielectric relaxation time of the solvent. The characteristics 
of the free energy fuctionals (which are the bases for phenomenological analytical models of charge-transfer reactions) are 
discussed, and the suitability of studying these functionals with the EVB formulation is demonstrated. 
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chemical and most biological reactions occur in the condensed 
phase and that gas-phase calculations cannot be expected to re­
liably describe condensed-phase chemistry. Although great insight 
into the nature of solvent effects has been provided by early 
macroscopic approaches (see for example ref 20 and 23-25), it 
seems now that obtaining reliable quantitative results requires the 
use of theoretical models formulated at a detailed, microscopic 
level. This is particularly needed in studies of charge-transfer 
reactions, in which the energetics and the dynamics are determined 
by the strong interactions between the solute and the solvent. 

Despite the crucial role of the solvent in charge-transfer re­
actions, it is not obvious how to include the solvent in microscopic 
quantum mechanical calculations of such reactions. Early at­
tempts2,60 to represent the solvent by a macroscopic cavity could 
not be used for quantitative study, since the solvation energy 
depends in a very strong way (1/a3) on the unknown cavity radius. 
Quantum mechanical calculations on supermolecules12 (i.e., solute 
plus a limited number of solvent molecules) could not include a 
sufficient number of solute molecules and could not thoroughly 
sample the many-dimensional solvent space. The first attempt 
to obtain a quantitative approximation for quantum chemical 
calculations of charge-transfer reactions in solution involved 
calculations of the disassociation of a water molecule in aqueous 
solution.3,4 This calculation introduced the effect of the solvent 
in the diagonal matrix elements of the SCF-MO Hamiltonian 
(MINDO-2 in this specific case) of the solute. The solvent was 
represented by the surface-constrained soft-sphere dipole (SCSSD) 
model. Later studies involved replacement of the SCF-MO 
method by the more reliable empirical valence-bond (EVB) 
method, which was implemented in both SCSSD calculations4 

and in an all-atom water model.163 These calculations included 
studies of proton transfer and general-acid catalysis reactions in 
aqueous solution. Similar approaches have been implemented in 
calculations on enzymatic reactions.1'18,19 

Subsequent studies7 have introduced ab initio solute potential 
surfaces which interact, through the calculated gas-phase charge 
distribution, with an all-atom water model. This approach was 
applied to studies of SN2 reactions in aqueous solution. Other 
works based on ab initio solute surfaces and empirical solvent 
potential functions have emerged recently,8-11 indicating that the 
field is entering a stage of rapid progress. 

In view of the great interest in this exciting field and the 
emergence of several alternative approaches, we find it both useful 
and instructive to apply the EVB method to the SN2 class of 
reactions. This class has become a popular test case for theoretical 
simulation of charge-transfer reactions in solution. This may 
reflect the fact that the SN2 reactions are among the simplest 
charge-transfer processes, since the changes in solvation energy 
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Figure 1. Demonstration of the major problems associated with using 
the gas-phase charge distribution. This figure considers the heterolytic 
cleavage of the X-Y bond in solution. This bond can be described by 
a mixture of a covalent state (Y-X) and an ionic state (Y+X"), with 
energies E1 and E2, respectively. These energies are indicated here with 
superscripts g and s for the gas phase and solution cases, respectively. 
The ground state obtained by mixing £,g and E2

1 becomes a pure cova­
lent state (Y-X") when the bond is broken in the gas phase. Using the 
gas phase charge distribution in the calculations will give zero solvation 
energy and an energy Z)XY (typically 90 kcal/mol) for the bond-breaking 
reaction in solution (since the wave function of the bond is almost fully 
covalent at all points along r, the solvent does not see any dipole and will 
not solvate the system). On the other hand, if the solvent effect is 
included in the solvent Hamiltonian, one obtains a solvated ground state 
(Y+X") for the broken bond in solution (since the solvent electrostatic 
stabilization lowers the energy of the ionic state and allows more ionic 
character in the wave function in the later half of the bond-breaking 
reaction). The corresponding error is around 60 kcal/mol in the case 
described here. 

(and, thus, solvent effects) are much smaller than they are for 
other charge-transfer reactions (such as proton-transfer reactions). 
It also appears (see below) that because of its symmetric gas-phase 
charge distribution, the SN2 reaction can be explored without a 
consistent incorporation of the solvent in the solute Hamiltonian 
(thus presenting a rather nonunique test case) (see below). 
Nevertheless, considering the fact that the SN2 is by now a more 
familiar test case than the more complicated class of proton-
transfer reactions,4,16 it is useful to demonstrate the applicability 
of our approach to modeling this system. 

The present work will explore the potential of the EVB method 
in studying both the energetics and dynamics of reactions in 
solution. In exploring the energetics of the SN2-type reactions, 
we will address the general concept of linear free energy rela­
tionships. This concept is one of the cornerstones of physical 
organic chemistry, dating back to the Bronsted relationship21 and 
to the more quantitative (yet macroscopic) formulations of 
Marcus23 and Hush24 (for reviews see ref 25 and 6). Microscopic 
studies of such relationships are still in their infancy. In fact, only 
a very limited number of microscopic studies18 have attempted 
to explore this problem. The present method appears to provide 
a natural way to simulate free energy relationships.18 In particular, 
the use of valence-bond structures (see also ref 5) allows one to 
evaluate from first principles the free energy functionals used in 
Marcus' and related theories and to examine their validity. The 
SN2 systems offer a very extensive base of experimental infor­
mation25 that can be used as a consistency constraint on the 
simulations. 

The combination of free energy calculations and quantum 
chemical treatments7,16,18 is a subject of significant interest. Our 
approach to this problem involves a rather elaborate treatment 
that combines the EVB method and a free energy perturbation 
method. This approach might appear to some readers as an 
unnecessary complication considering the more recent and seem­
ingly simpler approaches (e.g., ref 7) that used gas-phase ab initio 
calculations to evaluate the solute charge distribution and then 
calculated the solvation free energy of the frozen solute charges 
in the given solvent. To realize the reason for our strategy and 
for many of the arguments made in this paper, it is instructive 
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to consider the heterolytic bond cleavage described in Figure 1 
(see also ref 4). The figure demonstrates why a completely rig­
orous gas-phase calculation will produce a charge distribution that 
will lead to a very large error in calculating the dissociation energy 
in solutions. This crucial point, which is not so obvious in cases 
of S N 2 reactions, emphasizes the need for a consistent coupling 
between the solvent charge distribution and the solute polarization. 

The coupling between the solvent charge distribution and the 
solute charge distribution determines the energetics of the 
charge-transfer reactions and thus strongly influences the dynamics 
of these reactions.163 Understanding the actual nature of this 
coupling could be crucial in determining the dynamics of a given 
reaction and the corresponding reaction pathway.26 Although very 
significant progress has been made in experimental studies of 
charge-transfer reactions,27"31 it is difficult to "invert" the ex­
perimental information in a unique way to obtain the corre­
sponding microscopic parameters. Here again it seems essential 
to augment the experimental information and the available 
phenomenological models through microscopic simulations of these 
systems. 

Attempts to simulate the actual microscopic dynamics of 
charge-transfer reactions in polar solvents were confined until 
recently to EVB studies of proton-transfer and electron-transfer 
reactions'6 and to chemical reactions in proteins.18 The EVB 
method appears to provide an effective way for studying the 
coupling between the solute and solvent coordinates. This coupling 
is entirely different for diabatic and adiabatic processes. Ap­
proaches that explicitly include the interacting electronic states 
provide a convenient way of exploring the two limiting cases. The 
simpler diabatic limit, in which the mixing between the relevant 
charge-transfer states is small, was explored by a semiclassical 
trajectory approach. I6ab The adiabatic limit, however, requires 
more extensive studies, since in this case a simple separation of 
the solute and solvent fluctuations cannot be assumed. Simulating 
SN2 reactions might provide a powerful theoretical benchmark 
for various analytical models. 

Section II of this paper describes our theoretical formulation, 
outlining the convenient analytical potential surfaces and their 
implementation in free energy calculations and in dynamical 
simulations. This part also examines some formal aspects of the 
relationship between the reaction rate constants and the fluctu­
ations of the solvent. Section III presents the results of our 
simulations, emphasizing both the examination of linear free 
energy relationships and the dynamical response of the solvent 
to the dipole moment of the solute. Our main conclusions are 
discussed in section IV. 

II. Methods 
(a) Analytical Potential Surfaces for the Solute-Solvent Systems. This 

section will describe the EVB procedure for the specific case of an SN2 
reaction (eq 1). 

X- + CH1Y — XCH, + Y" (D 

In this system there are three atomic orbitals that are the most im­
portant in determining the potential energy surface for the reaction. 
These are the atomic p, orbitals centered on the X, Y, and C atoms (see 
Figure 2a). For the sake of simplicity in this paper we make a number 
of assumptions regarding the quantum mechanics of the SN2 reaction: 
(1) We assume that the three orbitals in Figure 2a are the dominant 
orbitals. Treating them separately from the rest of the orbitals in the 
system does not change the reaction potential energy surface in any major 
way. (2) It is assumed that the hybridization of the three oritals does 
not change over the course of the reaction and specifically that the 2p, 
orbital on the central carbon atom does not mix with the 2s orbital. (This 
is of course not a very good assumption but any errors can be absorbed 
into the empirical matrix elements described later.) (3) We neglect 
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Figure 2. (a) Three active p, orbitals that are used in the quantum 
treatment of the SN2 reaction, (b) Valence-bond diagrams for the six 
possible valence-bond states for four electrons in three active orbitals. (c) 
Relative approximate energy levels of the valence-bond states in the gas 
phase with the three quantum atoms in a geometry where the X-C and 
C-Y distances are 2.0 A and the X-Y distance is 4.0 A. See Table 1 for 
the estimation of these energies. 

quantum interaction between the three "active" atomic orbitals and the 
other orbitals in the system (e.g., C-H bonds and the lone-pair orbitals 
on the X and Y atoms). (4) The contribution to the reaction potential 
energy surface of the remaining orbitals is evaluated by a classical force 
field method (i.e., using harmonic bond and angle terms to attempt to 
mimic the actual quantum mechanical potential energy terms). 

We could use an SCF-MO formalism to determine the energy of the 
system as a function of the coordinates of the X, Y, and C atoms over 
the course of the substitution reaction. However, there are bonds broken 
in the reaction, and it is well-known that the SCF-MO methods fail when 
treating bond-breaking processes." Thus, we must use a formalism that 
will effectively treat bond breaking. Any method allowing for more than 
one Slater determinant (configuration) in the wave function will work. 
Some possible choices are the CI, MCSCF, and VB methods, with all 
of these approaches being exactly equivalent in the limit of a complete 
basis set of configurations. (Our system has 4 electrons in three orbitals 
so the complete basis set will have six Slater determinants; see Figure 2b.) 
We prefer to use the VB method since the form of the wave function of 
each of the configurations has direct chemical meaning. This allows one 
to safely neglect some of the configurations to a first approximation, when 
inspection of the bonding diagram (Figure 2b) indicates that these con­
figurations have high energy. Another advantage of the VB method is 
that the distribution of charge in each configuration is obvious (i.e., the 
atomic orbitals have either 0, 1, or 2 electrons with no fractional occu­
pancy). This feature allows the electrostatic coupling between the 
classical solvent and the VB configurations to be treated easily. 

For this paper we will use only the three configurations corresponding 
to the states 

= X:" C-Y = X-C Yr tf>j = X:" C+ Y: (2) 

These three states have the lowest energy of the six possible states of the 
4-electron three-orbital system. The other three states have very high 
energy: The two states XrCfY* and X+CrY:" have an unfavorable 
juxtaposition of negative charges as well as a positive charge on a halogen 
atom; the other state X -CrY - has an almost completely broken bond as 
well as a carbanion (see Table I and Figure 2c). In a fuller treatment 
of the reaction we would need to use these resonance structures to recover 
all of the correlation energy, but for the approximate empirical treatment 
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Table I. "Back of the Envelope" Estimation of the Energies of the 
Valence-Bond States (kcal/mol) 

Data Used in Calculating the Energies of the States" 

parameter 

average halogen atom 
ionization potential 
electron affinity 

methyl group 
ionization potential 
electron affinity 

carbon-halogen covalent bondc 

4.0-A halogen-halogen bond'' 
H charge distribution 
- + - charge distribution 

energy' 
energy8 

value 

250 
70 

230 
=*o4 

60 
0 

-60 
-180 

abbrev 

IPx 
EAx 

IPCH, 
EA C H 3 

Dc-x 
Dx-X 
»W+—) 
Vm(- + ~) 

Approximate Valence-Bond State Energies^ 
E(\) = reference state energy = 0 
£(2) = reference state energy = 0 
£(3) = VQQ(- + - ) + IPcH3 - EAx + Dc-x = +40 
£(4) = 
E(5) = 
E(6) = 

VCK>(+-
VQQ(+-

- ) + IPx " 
- ) + IPx-

IPx - EA0H3 + Dc. 

• EA0H3 

" EACH3 

-x - Dx-

+ Z)c-x = 
+ />c-x = 
.„ = +310 

+250 
+250 

"See ref 64 for typical numbers. 'Reference 65. cRough estimate 
of the energy of an average C-X bond at 2.0 A (see ref 64). ''The 
bond is assumed to be almost completely broken. ' Coulomb energy of 
the given charge distribution at the transition-state geometry. 
-^Neglecting induced dipole and delocalization effects. The numbers 
are only a rough guideline and are not meant to be taken too seriously, 

we plan to use, these structures should have negligible effect due to their 
very high energy. 

The VB wave functions corresponding to active electrons in these 
states are given in (3), where the vertical bars denote Slater determinants 
and the notation Y0 indicates the orbital on the atom Y has an electron 
with a spin. The JYS denote normalization constants. 

0, = JV,||Y0C8X0X8| - |Y8C0X0X8|| 

<t>i = ^HY0Y9C0X8I - IY0Y8C8X0H 

*3 = ^2IY0Y8X0X8I (3) 

Since this is an approximate treatment of the SN2 reaction, we will 
limit ourselves to these three low-energy states and define our basis for 
the electronic wavefunction as (4). 

*I = 0lXl *2 = 02X2 *, 03X3 (4) 

The basis wave functions given above are product functions of the 
valence-bond wavefunctions given earlier and the functions x,, which are 
the wave functions for the other inactive electrons in the problem moving 
in the field defined by the active electrons. We have thus partitioned the 
molecular electronic space into active and inactive parts, and we assume 
no interaction between these parts. This requires that the Hamiltonian 
be of the form H = Hact + HilBCt. The matrix elements between the basis 
wave functions are as in (5). The active electron matrix elements given 

H11 = <*(|H|*,> = O,|Hact|0,> + tolHtacJx,) 

H1J = <*,|H|*,> = <0,|H,ct|0j> + (X1[HinJXj) (5) 

in ref 59 are as in (6) 

<0i|Hact|0,> = (1 + S1
2 - SV)->«l|Hac t | l) + <l|Hact|2> - <l|Hac t |3» 

<c62|Hacl|02> = (1 - S,2 + S2
2)->«5|Haa|5> - <5|Hac,|6> + <5|Hact|7>) 

(*3|Hac,|<*3> = <4|Hact|4> 

<0,|Hact|03> = ( 2 / d + 51
2-52

2))1/2<i|Hao t |4) 

<03|Hact|02> = (2/ (1 - S1
2 + S2

2))'/2(4|Hact|7> 

<0,|Haot|02> = (2/ (1 - (S,2 - S2
2)2))'/2U|Hact|5> (6) 

where 1 = Y(1)C(2)X(3)X(4), 2 = C(1)Y(2)X(3)X(4), 3 s Y(1)X(2)-
X(3)C(4), 4 = Y(1)Y(2)X(3)X(4), 5 = Y(1)Y(2)C(3)X(4), 6 = Y(I)-
C(2)Y(3)X(4), 7 = Y(1)Y(2)X(3)C(4), 5 , = <Y|C>, and S2 = <X|C>. 

X, Y, and C are the wave functions of the atomic p, orbitals on the 
X, Y, and C atoms, respectively. This formulation assumes that the 
overlap integral and exchange integral between the pz orbitals on the 
atoms X and Y are negligable. See ref 59 for evaluation of these matrix 
elements. 

The matrix elements of the inactive electrons are evaluated by a 
classical force field and are given in (7). The meanings of these terms 
will be discussed below. 

(x,|Hinact|x,> = 
/2 L *,<"(« - (V0)2 + Vi E KbV\b - V>) 2 + Knonbonded«> (7) 

angles bonds 

(Xi\HimJXj) = 0 

Our task at this stage is to obtain analytical expressions for the matrix 
elements of the Hamiltonian and then to evaluate the ground-state po­
tential surface, £g, through the relationship (eq 8), where S is the overlap 
matrix (Sy = <if#,». 

CZ(S-1Z2HS1Z2JC8 = C/HCg = £g (8) 

The usual EVB procedure involves diagonalizing this 3 x 3 Hamil­
tonian. However, here we use a very simple model for the SN2 reaction 
and will represent the potential surface and wave function of our reacting 
system using only two electronic states. Using a two-state system will 
preserve most of the important features of the potential energy surface 
while at the same time providing a simple model of the SN2 reaction that 
will be more amenable to discussion than the three-state system. For our 
two-state system we define the states in (9) as our reactant and product 
wave functions. For this paper the vector R can be assumed to be (/?x_o 
/?C-Y). 

a,(R)*, + 0,(R)*3 h = «2(R)*2 + ft(R)*3 (9) 

The mixing of state 3 into states 1 and 2 can be visualized as the 
polarization of the covalent bond in each structure as the nucleophile 
brought up to the carbon. In the product and reactant states with the 
nucleophile at infinite separation from the carbon center (i.e., /?proci,ma, 
= (1.5, <=°) or ,̂eac.mai = (°°, 1.5)), there will be a net polarization of the 
covalent bond due to the difference in the electronegativity of the two 
atoms. In the gas phase, as the nucleophile approaches the carbon its 
negative charge increases the bond polarity since the electronegativity of 
the carbon is reduced by the presence of a nearby negative charge. 
However, in solution phase the energies of states 1 and 2 are lowered with 
respect to the energy of state 3 even more than they are in the gas phase, 
and this polarization term is expected to have smaller dependence on the 
nuclear coordinates than in the gas phase. In a first approximation we 
can assume that the as and /3's do not depend on R and that they are 
equal to the coefficients of the ionic and covalent terms in the valence-
bond wave function of the C-X and C-Y bonds. 

The matrix elements of our 2 X 2 active Hamiltonian are then given 
as (10). 

/Z11
0 = M I H h M = CV(S1IHI*,) + ft2<$2|H|$2) + 2a,(3,<$,|H|$2> 

(10) 

H21
0 = MIHKM = a2

2<*3|H|4>3> + fc2(*2|H|*2) + 2a2/32(*3|H|$2> 

Hn
0 = M | H | . M = 

a , a 2 (* , |H |* 3 ) + a,/32(*,|H|*2> + a2/3,<*2|H|*3) + /3,ft<*2|H|<t>2> 

These matrix elements are in a form that can be evaluated by standard 
quantum chemical methods. This evaluation is tedious, and the earlier 
assumpitons that we made will lead to errors in the matrix elements. On 
the other hand, we can use experimental information to approximate the 
diagonal matrix elements. That is, the rather complicated function H1, 
will be given, at the range where RX-c >s large compared to the C-Y bond 
length, by a Morse potential function that depends on the distance Rc-y 
When X - approaches C, we have a repulsive van der Waals interaction 
and an attractive charge-induced dipole interaction between these atoms. 
We can describe both of these forces using analytical potential energy 
terms (see below). The same argument applies to H12. As far as Hn is 
concerned, we can approximate it by an exponential term and fit the 
parameters in this term to the experimental information on the gas-phase 
potential energy surface of the reaction or, if needed, to accurate gas-
phase calculations (e.g., ab initio CI,63 MCSCF,62 or VB32"34). Note that 
this approach compensates for our approximate formal treatment as, for 

(32) Goddard, W. A., Ill; Dunning, T. H., Jr.; Hunt, W. J.; Hay, P. J. Ace. 
Chem. Res. 1973, 6, 368. 

(33) Cooper, D. L.; Gerratt, J.; Raimondi, M. Nature (London) 1986, 323, 
699. 

(34) Epiotis, N. D. Theory of Organic Reaction; Springer-Verlag: Berlin, 
1978. 

(35) Warshel, A.; King, G. Chem. Phys. Lett. 1985, 121, 124. 
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Table II. Parameters for the Potential Functions0'' Parameters of 
Solute-Solute Interactions 

Bonded Function Parameters' 

D VA 
C-Cl 
C-H 

60.0 1.8 
1.102 

2.0 
310.6 

Nonbonded Function Parameters' 

atoms B1 

CCl" 
Cl, Cl-
H, Cl-

0.1459 
0.1366 

3,1500 
5.5866 

11297.2 120.45 3.6 

Bending Potential Function Parameters'* 

atoms 

H-C-H 
H-C-Cl 

liK> 
36.0 
30.0 

EVB Matrix' 

A n 

W12 22.0 1.0 

Parameters of Water-Water and Water-

atom q A/ 

Oo 

109.5 
109.5 

ra 

5.0 

-Solute Interaction 

B<> 7* 

H 
O 
H* 
O* 
F-
Cl-* 
Ci-
I-

0.328 
-0.656 
0.410 

-0.820 
-1.000 
-1.000 
-1.000 
-1.000 

6.14 
648.5 

5.0 
793.3 

11000.0 
2000.0 

15000.0 
16000.0 

1.650 
23.17 

2.000 
25.02 

2.501 
2.501 
2.501 
2.501 

0.1 
1.23 

"Energies in kilocalories/mole; distances in angstroms. *The bonded 
energy is given either by Morse potential. D exp[-2a(A - A0)] - 2 
exp[-a(A-A0)] or by harmonic potential Y2Xt(A - b0)

2. 'The non-
bonded interaction is given either by t*[(r*/r)12 - 2(r*/r)6] or by A 
exp(~nr) - BJr6. ''The bending function is given by 'I2K0(B - B0)

2. 
'The EVB off-diagonal element Hn is given by A exp(~n(r - r0)). 
•'The solute-water van der Waals interaction is given by A1Aj/^2 -
B1B1Ir

6. *y is the atomic polarizability. * Parameters used for calcu­
lations without including induced dipole. 

example, the Morse potential is the exact form of H21 sit Rpatjn*- Other 
semiempirical SCF methods attempt to fit only atomic terms (e.g., res­
onance and repulsion integrals) to experiments, while our method fits the 
matrix elements of well-defined states to direct experimental information 
about the potential energy surface (fitting the diagonal matrix elements 
to the known bond length, bond energies, nonbonded interactions, and 
electrostatic energies). Thus, we feel that this method is inherently more 
reliable than other semiempirical quantum mechanical methods. 

The method described above is intended to show the motivation for 
an approximate two-state description of the SN2 reaction. It is not 
intended to be a rigorous derivation of the two-state model. The model 
used is the simplest possible one that includes most of what we feel is the 
major physics behind solute polarization in solution. We refer the readers 
to ref 62 and references therein for a deeper discussion of the quantum 
chemical significance of adopting a two-state model for chemical reac­
tions. Moreover, our treatment is not at all restricted to a two-state 
model. The same EVB treatment has been used before for three or more 
states.19a We feel that the two-state model is the simplest and most 
efficient way to present our approach. 

In view of the above arguments, we concentrate on fitting the gas-
phase information to the two-state model in (11) in which the gas-phase 

' = //„ M(A1) + Knb<'> + Kind"> + ^ J j X 0 W " Ao)2 + 

"V w w > - <y2 (ID 

to = H22O = M(b2) + VJ2) + K,nd(2) + a(2, + 

' / 2 IX ( 2 ) (V 2 ) - Ao)2 + fc£*(2W» - e0)
2 

m 

Hn = A exp[-M(r3 - r3°)] 

energies«,° are represented by a rather standard force field (of the type 
discussed in ref 53), where A1, A2, and r3 are the X-C, C-Y, and X-Y 
distances, M(bj) is the Morse potential for they'th bond, b„ are the C-H 

- 1 . 2 0 -

c 
Ed 

- 6 . 0 0 - 2 . 0 0 2 . 0 0 6 . 0 0 

ARtA) 

Figure 3. Gas-phase EVB potential surface for the Cl~ + CH3Cl — 
ClCH3 + Cl" reaction. The reaction coordinate AJi', which is determined 
by minimum energy reaction pathway, is given by AR' = A2 - A1, where 
A2 is the distance between C and leaving Cl and A1 is the distance between 
C and nucleophile Cl. See the text for a discussion of the relation 
between this surface and the available experimental and theoretical in­
formation. 

bond lengths, and 6m are the X-C-H, H-C-H, and H-C-Y angles 
defined by the covalent bonding arrangement for a given resonance 
structure. For example, in 1̂ 1 the 6m are defined by the H-C-Y and 
H-C-H angles, and the K9 for the X-C-H angles are set to zero. The 
V„b

M are the nonbonded interactions between the nonbonded atoms in 
the ith resonance structure. For ^1 this includes the X'—C repulsion, the 
X - - H repulsion, and the X'—Y interaction. The nonbonded interactions 
are described by either Ae~" or 6-12 van der Waals potential functions 
(see Table II). The induced dipole terms describe the attraction between 
the charges of the system (Q) and its induced dipoles. This is evaluated 
(kcal/mol) by 

VJ0 = -166E7m|vtm
(0l: (0|2 (12) 

where fm
(,) is the vacuum field on the mth atom from the charges (£m

(" 
= 2yg;

(()rmy/rmy3) with the system in state \p,, and ym is the atomic po­
larizability of the rath atom. The induced dipole-induced dipole inter­
actions are neglected in the solute potential. Finally, the am parameter 
is the energy difference between \j/2 and ̂ 1 with the fragments at infinite 
separation (this is simply the difference in heat of formation of X~ + 
CH3Y and Y - + CH3X). The parameters used are given in Table II. 

The key point about the functional form of C1 and «2 is that the ex­
perimental properties of the reactants and products at infinite separation 
are reproduced exactly. The behavior at the transition-state region can 
then be obtained by adjusting H12 to fit calculations and/or experiments. 
The gas-phase potential surface used in this paper for the Cl" CH3Cl 
system is shown in Figure 3. This surface presents the best fit obtained 
with the two-state model to the ab initio calculations7 of the barrier and 
to an experimental estimate of the ion-dipole complexation energy. Our 
barrier is 3.6 kcal/mol as compared to the ab initio result of 3.6 kcal/mol 
and -5 kcal/mol for the complexation energy as compared to the -8.6 
kcal/mol observed complexation energy and to ab initio calculations7 

ranging between -14.9 and -10.3 kcal/mol. A better fit could be ob­
tained by the three-state model (eq 2), but such a treatment would 
complicate our discussion with little additional benefit. 

The main point in the EVB method is not in its gas-phase surface but 
in its treatment of the solvent. The formal treatment of the solute-solvent 
system can be done by writing the wave function of the system as a 
product of the solute and solvent wave functions as in (13), where <t> are 

*^° = WiV"*.'"*,0 (13) 

the wave functions of the solvent molecules and <j>J designates that the 
mth solvent molecule is in its y'th excited state. Neglecting charge-
transfer interaction between the solvent and solute, we can treat the 
solvent molecules classically (as was done for the inactive electrons of the 
solute). Such treatment takes into account the effect of the excited 
solvent molecules by a perturbation treatment and results in a classical 
interaction between the solute charges and the solvent-induced dipoles 
(see Appendix 4 of ref 1). Thus, we can write the diagonal matrix 
elements of the solute-solvent system as the sum of the gas-phase matrix 
element for the solute and a term that represents the classical interaction 
between the solute and the solvent. The off-diagonal term should be 
influenced by the solvent also; in particular, it includes the coupling of 
states 4>\ and tp2 with 1A3, and the energy difference between these states 
depends on the solvent configuration at any given moment of time. 
However, since the energy gaps between states 1-3 and 2-3 are large, 
we will neglect the effect of the solvent on the matrix element Hn to a 
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Figure 4. "Snapshot" of one of the many configurations generated by 
molecular dynamics simulation of an SCAAS + EVB model of the Cl" 
+ CHjCl — CICHj + Cl" SN2 reaction. This configuration is generated 
on the potential <m = (*, + «2)/2. which constrains the system to be at 
the transition-state region. 

first approximation and set it equal to its gas-phase valuc.S6 That is, we 
use (14), where S and s designate solute and solvent, respectively. Vg11 

<, = Wn = *r„« + ^,.s.1" + W + W + K <i4) 

<2 = Hn = H2 2
0 + VQqSt

w + V*g<n + Kwa.Ol + V1 

Hr, = H12
0 

is the electrostatic interaction between the solute charges (Q) in the given 
resonance structure and the solvent residual charges (</), V„b is the non-
bond interaction between solute and solvent atoms, and Kind is the in­
teraction of the solvent induced dipoles with the solute charges (eq 15). 

V0, = 332 L Qa1/r 

V^ = V2T-(A1A1Zr1J 

(15) 

Bfij/r,?) 

l-ind = -166Z(-,,/</)|J,|2 = 
Jit) 

-l66£(7;/<')|i:«IV>/'>' + £ & V / I 2 

JW *(•> «S) 

H e r e the field | on each solvent a t o m includes t h e effect of both the solute 
a n d t h e solvent c h a r g e s . T h e s c r e e n i n g c o n s t a n t d a c c o u n t s for the 
a t t e n u a t i o n of t h e field d u e to induced d i p o l e - i n d u c e d dipole in teract ions . 
The replacement of the self-consistent treatment of the interaction be­
tween induced dipoles by the use of the screening constant is examined 
elsewhere (e.g., ref I). The solvent-solvent interaction is modeled by 
charge-charge and 6-12 potentials and induced-dipole terms (which are 
included in VM). The inclusion of the solvent-induced dipoles allows us 
to use the gas-phase charge distribution in assigning the residual charges 
for the solvent atoms. However, for the purpose of comparison with other 
treatments, we will also consider a parameter set without induced dipoles. 
All the solvent parameters are listed in Table II. 

In treating the solvent molecules, we introduce spherical boundary 
conditions using the surface-constrained all-atom solvent (SCAAS) 
model, which is described in detail elsewhere" and outlined in Figure 4. 
This model surrounds the reactive region with a sphere of solvent mole­
cules. The surface of this solvent sphere is constrained by additional 
forces that simulate the effect of the missing bulk solvent. 

With analytical functions for <i, t2, and H1 2 we can now obtain an 
analytical surface for the solute-solvent system by diagonalizing H. This 
gives (16). The nature of this analytical surface can best be understood 

+ € , ) - [ ( € , - < 2 ) 2 + 4H12
2I1 '2] (16) 

from Figure 5. As seen from the figure, the reactant state is favored 
when the solvent molecules are polarized toward X and the product state 
is favored when the solvent is polarized toward Y. The solvent will act 
to push down the energy of either state by dipolc-charge interactions, 
thus adding a new coordinate to the potential energy surface of the 
reacting molecule, the solvent coordinate. This coordinate can be con-

Lite Re . "i in 

I 

Figure 5. Relationship between the polarization of the solvent dipoles 
and the energetics of the diabalic states (<,) and adiabatic ground state 
(E,) for the SN2 reaction X + CH3Y — XCH, + Y . When the solvent 
dipoles arc polarized toward X (upper figure), the reactant state. ^1 . is 
stabilized. When the solvent dipoles point toward Y (lower figure), the 
product state, ^2 , is stabilized. For any given solute geometry the ground 
state in the upper figure has more negative charge on X than in the 
ground state of the lower figure. 

veniently represented as the difference of the interaction energy of state 
I and state 2 with the solvent. In the gas phase, this coordinate always 
has a value of O and the potential energy surface of the system depends 
only on the nuclear coordinates of the solute. The multidimen 
nuclear and electronic solvent coordinate can be projected ont 
one-dimensional energy gap. which represents the extent to whic 
solvent is polarized toward one solute charge distribution or the 
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It is instructive to note that this solvent pola 
the solute charge distribution at any given solu 
is because the solvent will shift the energies 
relative to their gas-phase values, and this c 
I and 2 in the actual electronic wave fundi, 
phase mixture. Thus, at any given solute geometry, the ground state in 
Figure 5a has more negative charge on X and that in Figure 5b has more 
negative charge on Y. This polarization effect has an important but not 
dominant role in the SN2 reaction, but for charge separation reactions 
(e.g., proton transfer in solution) it will be a dominant factor since it 
allows the solute to respond to the solvent polarization by changing its 
polarization, thus influencing the solvent motion. This is also the main 
reason that gas-phase potential energy could lead to inconsistent results 
in solution—they have no information about the effect of the solvent 
fields on the solute charge distribution. 

(b) Evaluating Activation Free Energies. Once the analytical potential 
surface is constructed, it is possible to evaluate the reaction rate by 
running molecular dynamics trajectories and finding the number of times 
the system reaches its transition stale. This, however, would require an 
extremely long simulation time except for systems with low activation 
barriers. Fortunately, one can express the relevant rate constant'6-3 by 
(17), where 8 = {kaT)~' and *B is the Boltzmann constant. *:TST is the 

* = ^TST = F(kBT/h) c x p [ - V t f ] (17) 

ale istant given by the standard transition-stale theory36 and F is the 
transmission factor that contains all the true dynamical information (sec 
next section). The factor cxp|-Ag'jS] expresses lhe probability lhat the 
system will be in the transition-state region X>C relative to the probability 
of being in an equal increment of the reaction coordinate al the reactant 
state. The problem is to evaluate the activation free energy, Sg', for the 
quantum mechanical ground-state surface E,. An effective method that 
allows one to tackle this problem is provided by a combination of the 
EVB method and a free energy perturbation technique. The details of 
this method; i elsewhere. Here, we will outline the main points 
and a recent modification that improves the rate of convergence. 

Our task is to find the probability that the system will be at the yet 
to be defined transition state. This requires an effective way of forcing 
the system to spend a significant amount of time in selected regions of 

(36) Glasstone, S.; Laidlcr, K. J.; Erving, H. The Theory of Male Pr 
•sses; McGraw-Hill: New York. 1941. 

(37) Anderson. J. B. J. Chem. Phys. 1973. 58. 4684. 
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Figure 6. Parametric dependence of the mapping free energy on the 
parameter X. The figure shows both the total free energy AG(X) (solid 
line) and the electrostatic contribution AGe,(X) (dotted line). The figure 
demonstrates that the largest contribution to AG(X) is due to electrostatic 
interactions. 

configuration space. The EVB method provides a very convenient 
mapping potential for doing this, and the free energy perturbation method 
tells us how to evaluate the free energy change associated with the 
mapping process (see below). Unfortunately, none of our mapping po­
tentials coincide with the actual ground-state potential. Thus, we take 
a two-step strategy starting with a convenient mapping procedure and 
then using the relevant raw data to construct the ground-state free energy 
surface. 

We start by performing a series of simulations using a potential of the 
form (18) and changing the vector Xm = (X1"

1, X2
m) in a systematic way 

from (1, O) to (O, 1) in n small increments, where the index m is changed 
from O to n - 1. In this way we can drive the system from the reactant 

em = XA 1 + X2^e2-2(X,"V)1 / 2 | tfi2l + X,"1 = 1 (18) 

state through the transition state and into the product state. Note that 
t\ has a minimum at the reactant geometry and e2 has a minimum at the 
product geometry so that as we change m, we force the system to move 
from the reactant state to the product state. Specifically, the solvent is 
forced to adjust its polarization to the changing charge distribution of 
the solute, and we will be able to see how much free energy the solvent 
needs to adjust to the solute configuration by using the free energy 
perturbation formalism described below. 

The Hn term, which was not used in our previous studies, minimizes 
the difference between the mapping potential and the actual ground-state 
potential. That is, the convergence of the calculated ground-state free 
energy depends (see below) on a correction term involving the difference 
between E1 and t„. Thus, we use an em that is as close as possible to E1. 
Unfortunately, the ground-state potential is given by the complicated 
function (eq 8 and 19), where the Cg's are implicit functions of the Ht/s. 

E1 - CgHC8 ^•CgjCgjH/j (19) 

As the simulation proceeds, the eigenvector C8 fluctuates in an unpre­
dictable way, making it hard to use it for generating a mapping potential. 
However, replacing Cg by a constant vector Cm, with C„, = (X/")'/2, 
produces (with X1 = X2 = 0.5) a potential em that approaches E1 at the 
transition-state region, where Cgl =* Cg2 = l /(2' /2) . This guarantees 
stable results at the transition-state region. 

The free energy associated with changing C1 to e2 may be obtained with 
the relationship38'39 (20), where ( )„ indicates an average of the quantity 
within the brackets calculated on potential surface em, and the free energy 

5G(\m - X1J = -(1/(8) In [<exp(-(eM, - eJ)/3>J (20) 

AG(Xn) = AG(X0 -* X„) = E 5G(Xn, - Xm+1) 

functional AG(X) reflects both the electrostatic solvation effects associ­
ated with the changes of the solute charges as well as the intramolecular 
effects associated with changing C1 to e2. Figure 6 demonstrates the 
dependence of AG(X) on X for an exchange reaction where X = Y. The 
figure gives both the total AG(X) and its electrostatic components. 

Obtaining AG(X) with the perturbation procedure using the mapping 
potentials tm is not sufficient for evaluating the activation free energy, 
Ag*, which reflects the probability of being at the transition state on the 
actual ground-state potential surface. The quantity AG(X) is basically 
used to find the free energy associated with changing e, to the potential 
(„' that forces the system to spend the longest time near the actual 
transition state. However, one still needs to find the probability of 
reaching the transition state for trajectories that move on E1. The cor-
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Figure 7. Free energy functional, Ag1 and Ag2 (see also ref 16c), as a 
function of the energy gap Ae. The calculations are done with ( • ) and 
without (A) solvent-induced dipoles. 
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Figure 8. Actual free energy profile for the ground-state surface as a 
function of the energy gap Ae. The calculations are done for the Cl" + 
CH3Cl — ClCH3 + C r exchange reaction, with ( • ) and without (A) 
solvent-induced dipoles. 

responding formulation (which is described in detail elsewhere160,18') 
defines the reaction coordinate X" in terms of the energy gap C2-C1. This 
is done by dividing the configuration space of the system into subspaces, 
S", that satisfy the relationship Ae(S") = X", in which the energy dif­
ferences X" are constants and Ae = e2 - «,. The X" are then used as the 
reaction coordinate, giving 

exp[-Ag(X")/J] = exp[-AG(XJ/3] <exp[-(£g(X") - em(X"))/3] > (21) 

This expression relates the probability of finding the system at X" on the 
ground state £g in terms of the probability of being on the mapping 
potential em that keeps X around X". The evaluation of Ag(X") for an 
exchange reaction is described in Figure 8. In addition to Ag(X"), we 
can obtain the probability of being at X" on e,. This probability defines 
the free energy functionals, Ag, (Ag1(X") = fexp[-e,(X")/3] dS"), which 
can be obtained through the same derivation that led to eq 21, and are 
given by (22). The evaluation of the Ag1- functionals for an exchange 
reaction is demonstrated in Figure 7. 

exp[-Ag,(X")/5] = exp[-AG(XJ,5] <exp[-(e,.(X") - e„(X")),3] ) m (22) 

This work attempts to evaluate free energy relationships on a micro­
scopic level (the actual calculations are described in section III). To 
examine simple analytical approximations for the calculated dependence 
of Ag' on AG0, we consider the harmonic expansion of our diabatic 
surface. This expansion can be obtained from the power spectra of the 
time-dependent e,(r) as was done in our dispersed polaron model16* and 
gives (23), where the ./?'s and Q's are the dimensionless coordinates for 

e, =* £ ( f t / 2 K ' ( r , + A,</2)2 + E ( r i / 2 ) ^ ( q y + A / / 2 ) 2 = 

(h/2)u>R(R + A*/2)2 + (h/2)uQ(Q + A„/2)2 (23) 

e2 =* L ( f t / 2 K ' ( r , - A/ /2) + E(h/2)uq\qj - A / / 2 ) 2 + AK0 =, 

(h/2)uR(R - A*/2)2 + (h/2)wQ(Q - A e / 2 ) 2 + AK0 

the solute and the solvent, respectively. The effective frequencies UQ and 
wR are evaluated by w = / 0 w P(a) du in which P(u) is the normalized 
power spectrum of the corresponding contribution to (e2 - ej). The R are 
related to the regular reaction coordinate R' = (bx - b2) by R = R'-
(uRiiR/h)1/2 where MR is the reduced mass for the normal mode that is 
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the compression of bt and the extension of 62. The reaction coordinate 
Q is defined in terms of the electrostatic contribution (e2 - «i)ei to (t2 -
C1). Thus, we have Q = (2(e2 - ' i W ^ e ) 1 ' 2 " which is also related to the 
regular solvent coordinate, Q', by Q = Q'(u0m0/hy/2. AV0 is the dif­
ference between the minima of e2 and e,. Here we replace the contri­
bution from each set of coordinates by one effective coordinate. The 
displacements A's are related to the so-called reorganization energy, a, 
given by (24). 

a = aR + aQ = 

E(A/2)«, ' (A,02 + £(fc/2)uV(A,') J « (h/2)uRAR
2 + (h/2)wQAQ

2 

t J 

(24) 

In the harmonic case we can evaluate the activation potential from eq 
16 and 23, obtaining (25), where the first terms represents the difference 
between the value of 11 at the transition state and the minimum of «i at 

AV <* (AV0 - a)2/\a - Hn(X0)
2/a - Hn(X*) 

N > IAV0I 

X0 (this term is simply obtained by finding the intersection of the two 
diabatic parabolas). The second term is the difference between the 
minima of «, and E1, and the last term is the difference between the 
values of C1 and Et at the transition state. The validity of eq 25 for 
anharmonic systems and its more physical form, where the e, is replaced 
by the corresponding Ag1, are discussed in section III. 

(c) Studying Dyamical Effects. A consistent description of the dy­
namics of charge-transfer reactions in polar solvents is far from being a 
simple task. Major problems are associated with the dependence of the 
solvation energy on the solute reaction coordinate, as well as the necessity 
to describe the reaction in terms of several electronic surfaces. The 
simplest case appears to be associated with electron-transfer reactions, 
in which Hn is small. In such a case one can consider the dynamics on 
a single diabatic surface (e.g., C1) and evaluate the surface-crossing 
probability at the transition-state region, where Ae approaches zero. This 
gives the rate constant in terms of the probability of reaching the tran­
sition state and a Landau-Zener-type transmission factor.16b Dynamical 
effects can be conveniently extracted (using a cumulant expansion) from 
the autocorrelation function of the energy gap Ae(O. Here, however, the 
situation is far more complicated; Zf12 is large, and one must run tra­
jectories on the adiabatic potential surface where the solute dipole mo­
ment varies along the reaction coordinate. In such cases one has to 
consider the mutual solute-solvent polarization, and the corresponding 
formal treatments are inherently complicated (see Appendices A and B). 
One can still use numerical approaches, provided the potential surface 
is given by an analytical expression. Such an analytical expression is 
provided by the EVB ground-state energy (eq 16), which captures the 
key electrostatic coupling between the solvent and the solute. 

To explore dynamical effects, one would like to evaluate the trans­
mission factor F of eq 17 as a function of the solvent dielectric relaxation 
time. Numerical simulation of F can be obtained conveniently by 
propagating trajectories first on em< and then switching the potential 
surface to E1 and continuing the trajectories. Monitoring the downhill 
trajectories whose initial momentum at X* points from the reactant state 
to the product state gives one a direct estimate of F, by the fraction of 
these trajectories that arrive in the product state.37 The transmission 
factor can also be evaluated in terms of the reactive flux autocorrelation 
function.54-55'61 

The overall dynamics may also be studied by a less explicit treatment, 
considering the projection of the actual many-dimensional dynamics on 
a space of lower dimensionality. In particular, it is instructive to consider 
the dynamics in two dimensions in terms of one effective solute coordinate 
(R) and one effective solvent coordinate (Q). Such effective coordinates 
are conveniently defined by the R and Q of eq 23 in terms of the cor­
responding solvent and solute contributions to e2 - e,. An equivalent and 
more familiar definition of the solvent coordinate can be obtained in 
terms of the macroscopic reaction field (£R) at the solute cavity, i.e., 
taking Q to be proportional to £R we obtain (26), where (e2 - ^)6 , is the 
electrostatic contribution to (e2 - e,), ^i and n2 are the dipole moments 
of the solute for the corresponding diabatic states, and Q - £,/C (where 
f Ii is the projection of £ on Qx1 - M2)-

(«2 - «l)el = (Ml " M2)S« = Cg(Mi - M2) (26) 

Once the coordinates are selected, we need a convenient description 
of the corresponding effective potential. As stated above one can describe 
the diabatic surfaces C1 and <2 in terms of shifted harmonic potentials (eq 
23). Our problem, however, is to describe the actual ground-state adi­
abatic potential in terms of Q and R. Fortunately, the dependence of £g 

on the solvent coordinate can be written in the simple way without eq 16. 
This can be done by considering the solvent interaction with the adiabatic 

ground-state dipole moment of the solute (eq 27), where the ground-state 

E1(Q) = V(Q) =* (h/2)wQQ2 - M^ = (h/2)o>QQ2 - CQ1X (27) 

M = Mi + (Mm.I/2)(l - cos 20) (28) 

adiabatic dipole moment, M, is given by40 eq 28 and where cot 20 = (e2 

- e,)/2//12 and m̂ax = (M: ~ Mi)- The parameter C can be related to the 
solvent reorganization energy a0 by eq 29, where we assume that \Hn/a\ 
« 1 so that Ii is given by Mi and M2 at -A e /2 and Ag/2, respectively (the 

otQ = VQ(Q = A e /2 ) - V0(Q = - A e / 2 ) = 

M2C(Ae/2) - MiC(-AG/2) = -C(A e /2)M m a J (29) 

same result can be obtained by comparing eq 26 and 23 and the rela­
tionship OQ = (HII)UQAQ2). Thus, we obtain eq 30. 

V(Q) = (h/2)wQQ2 - (2a e /A e ) ( M / M m a x ) e (30) 

With the potential of eq 30 one can write the equation of motion for 
the solvent coordinate as41 (31), where A'(t) is a random force and m0 

mQQ'=-£mQyQ(t-T) Q'(r) dr - dV/dQ'+ A'(t) (31) 

is defined in Appendix A. Approximating y0 by a 6 function (7 = yQ 

6(t)) and using the dimensionless coordinate, Q = (/HQUQ/h)1/2Q', eq 31 
can be written as (32), where A(t) = (o>g/ftme)

1/2 A'(t). We can use 

Q = ~yQQ ~ "Q1Q " (uQ/h)(2aQ/A0)[OnZdQ)Q + Ix]Z1X^ + A(t) 
(32) 

the properties of the Brownian harmonic oscillator (Appendix A) to relate 
Yg to the autocorrelation function (acf) of Q(t), while A(t) can be related 
to ya by the fluctuation dissipation theorem. 

Similarly, we can write the approximate equation of motion of R as 
(33). 

J? = -yRR - (wR/h)BEt/dR + AR(t) (33) 

The coupled equations (32 and 33) can be expressed in terms of the 
equivalent Smoluchowski equation and solved under simplified conditions 
(Appendix A). It is also interesting to attempt to solve these equations 
numerically by Langevin dynamics. Here, however, we prefer to explore 
the nature of reactive trajectories in (Q, R) space using linear response 
theory. The rationale is based on the following intuitive argument. The 
rate constant can be written as66,67 (34a), where H(X) is 1 and 0 for 

k = (XH(X)Z)* exp[-g(X*)0]Z fexp[-g(X)/3] dX = 

((X+)*ZAX*) C* exphrW/3] dX/ C sxp[-g(X)fi} dX = 

((X+)ZAX')zxp[-Ag*0] (34a) 

positive and negative X, respectively, and £ is a factor that counts each 
productive trajectory only once and is taken as 1/m for a productive 
trajectory that crosses the transition state m times67 (for some different 
formulations see also ref 55 and 61). The notation (X+) designates the 
average of (X H(X) £). The quantity ((A'+)/AA^*)"1 is the average time 
it takes for a productive trajectory to pass AX*, and we can write (34b). 

Ic^f-* exp[-Ag*0] (34b) 

The time f is not much different from the time it takes a downhill 
trajectory to move from the transition state to the product state, T can 
be determined if we know the time dependence of the average solvent 
coordinate for productive trajectories and use the approximate relation­
ship (35). The time derivative of (Q+) reflects the solvent dielectric 

f-' = (d(Q(t)+) Zdt)/AQ* (35) 

relaxation time (see below) and therefore relates the rate constant to the 
solvent dynamical properties. Maybe more importantly, one can use 
(Q+U)) to explore the mechanistic features of the reaction coordinate 
outside the transition-state region. Specifically, the relationship between 
(Q(t)) and (R(t)) can be used to define reactions as either "solvent 
driven" or "solute driven". With eq 35 in mind we can evaluate (Q(t)) 
by propagating many downhill trajectories or alternatively using the 

(38) Zwanzig, P. W. / . Chem. Phys. 1954, 22, 1420. 
(39) Valleau, J. P.; Torrie, G. M. In Modern Theoretical Chemistry; 

Berne, B., Ed.; Plenum: New York, 1972; Vol. 5, p 137. 
(40) Davydov, A. S. Quantum Mechanics; Pergamon: Oxford, 1976. 
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linear response theory.41 This can be done by noting that the driving 
force in the equation of motion for the solvent coordinate can be described 
in terms of the zeroth-order solvent Hamiltonian and a perturbation 
Hamiltonian H' given by (36). According to linear response theory41 we 
have (37). 

H' = ( U e / f t ) (2a e / M m a ,A e ) M e =* F*nQ = AvQ (36) 

(Q(I)) = -AB C(Q(O) Q(f))»(t - O df (37) 

If the acf of Q(I) can be represented by a single exponential we will 
have (38). Describing the time dependence of the solute dipole moment 

<G(0) G ( O ) = 5 exp[ - / / r e ] 

-ft(Q(0) QO)) = (Q(O) Q(I)) = (B/TQ) expH/TC] (38) 

with a relaxation time T11 (n = Mi(I - exp(-;/r)), we obtain the recursive 
approximation (39), where (T*)"1 = (TQ'X - T,,"1) and T/1*"1' is the re-

(Q(O),= 

-MB/SMl/Te) j^ ' exp[- ( f -0 /T e ] ( l -expH'/r,,*"-1)] dO = 

((Q'(«>))/TQ)(TQ- T* e x p H / r / ^ " ] - (TQ-T*) expl-l/Tg]) (39) 

laxation time obtained by evaluating the time-dependent solute coordi­
nation using eq 33 with the (G(O)n-I obtained in the previous iteration 
of eq 39. 

In the special case of TL = T„, eq 40 holds. 

<G(0> = « G ( » ) > / r L ) ( n . + C ~ TL) exp[-r/rL]) (40) 

This interesting behavior is different from that obtained in related 
studies of fluorescence line shifts.50,51 The difference reflects the fact that 
in realistic adiabatic systems the development of the dipole /x takes a 
finite time. Attempts to evaluate (G(O) a r e reported in section III. 

Other options of studying dynamical effects are considered in Ap­
pendices A and B. The main point (for related studies see ref 14, 15, 16b, 
47, and 48) is that the dynamical effects can be extracted from acf of 
the time-dependent energy gap. The solvent contribution to the acf is 
characterized on a macroscopic level by the longitudinal dielectric re­
laxation time. Our interest, however, is to explore the validity of the 
macroscopic estimates on a microscopic level. 

HI. Results and Discussion 

(a) Free Energy Surfaces and Free Energy Relationships. To 
evaluate the free energy surface of our reaction, it is necessary 
to sample the configuration space of the solute-solvent system 
along its reaction coordinate. We performed this sampling with 
molecular dynamics simulations, using our molecular simulation 
package MOLRIS. The solute (nucleophile + a methyl halide) 
and a surrounding cluster of 60 water molecules constituted the 
system we studied. (A preliminary study using 80 water molecules 
yielded similar results.) The potential energy surface of the entire 
system was evaluated with the SCAAS model35 for the water, and 

(41) Kubo, R. Rep. Prog. Theor. Phys. 1966, 29, 255. 
(42) Nee, T. W.; Zwanzig, R. J. Chem. Phys. 1970, 52, 6353. 
(43) (a) Szabo, A.; Schulten, K.; Schulten, Z. /. Chem. Phys. 1980, 72, 

4350. (b) Schulten, K.; Schulten, Z.; Szabo, A. J. Chem. Phys. 1981, 74, 
4426. 

(44) (a) The longitudinal relaxation time, TL = 0.23 ps, of water is cal­
culated by TL = TD(2e. + l)/(2«0 + 1) where e„ = 78.6 and C0= 1.8 are the 
low- and high-frequency dielectric constants and rD = 8 ps is the Debye 
relaxation time.4411 (b) Davies, M. In Dielectric Properties and Molecular 
Behavior; Hill, N. E., Vaughan, W. E., Price, A. H., Davies, M., Eds.; van 
Nostrand-Reinhold: New York, 1969. 

(45) Wang, M. C; Uhlenbeck, G. E. Rev. Mod. Phys. 1945, 17, 323. 
(46) Kramers, H. A. Physica 1940, 7, 284. 
(47) Ovchinnikova, M. Ya. Sov. J. Chem. Phys. 1986, 4, 1. 
(48) Zusman, L. D. Chem. Phys. 1980, 49, 295. 
(49) Feynman, R. P.; Hibbs, A. R. (1965) Quantum Mechanics and Path 

Integrals; McGraw-Hill: New York, 1965. 
(50) Mazurenko, Y. T.; Bakshiev, N. G. Opt. Spectrosc. 1970, 28, 490. 
(51) Bagchi, B.; Oxtoby, D. W.; Fleming, G. R. Chem. Phys. 1984, 86, 

257. 

the EVB parameters of Table II for the solute. The SCAAS model 
applies surface-constraint forces (to maintain the correct surface 
polarizataion and solvent density) and Brownian forces to the 
solvent molecules at or near the surface, which for this work were 
the outermost 34 molecules. The frictional and stochastic com­
ponents of the Brownian force are adjusted so as to provide a 
"thermostat" for the system. For the present simulations the 
average temperature was maintained at ^300 K. Trajectories 
of 4 ps were collected for each of a number of points along the 
solute reaction coordinate (after equlibration runs of =^6 ps) with 
a time step of 0.6 fs. Each 4-ps trajectory required 8 h of cpu 
time on a VAX 11/780. The free energy change associated with 
moving from state m to state w'was taken as the average of the 
forward and backward processes, (AGmm< - AG„/m)/2, with AGmm/ 
(forward) and AGm-m (backward) defined as in eq 20. The con­
vergence errors of our similations were assessed by integrating 
the free energy change of the forward and backward processes 
and found to be less than 1 kcal/mol. 

As a first test case we consider the C r + CH3Cl —• ClCH3 + 
Cl" exchange reaction. The gas-phase potential surface, which 
was obtained by fitting the two-state gas-phase EVB calculations 
to the corresponding ab initio barrier7 and the experimental 
complexation energy,52 is given in Figure 3 (see discussion in 
Methods). The free energy for this reaction is solution was ob­
tained with our mapping procedure, and the results are described 
in Figures 6-8. Figure 6 describes the free energy associated with 
changing the mapping potential tm of eq 18 from e, to e2- The 
electrostatic contribution to this free energy has been calculated 
by retaining only the electrostatic terms of tm (the solute-solvent 
interaction). The resulting free energy function reflects the change 
in the free energy of the solute charges during the reaction and 
is also given in Figure 6. The increase in the electrostatic free 
energy for X = (1, 0) -* X = (V2, '/2) is due to the spreading of 
the solute charge over two centers and can be estimated without 
any simulation by scaling the corresponding macroscopic ex­
pression. For X = (1,0) we basically have the solvation free energy 
of an isolated C r ion, which can be evaluated by "fitting" the Born 
equation to the observed solvation free energy of a Cl~ ion, using 
(41) with energy in kilocalories per mole and the effective cavity 

AG801(Cl-) s* - 1 6 6 ( 6 7 « ) = -166 /5 = -70 (41) 

radius a in angstroms. Using the observed AGSO|(Cr) to obtain 
a, rather than using a to obtain AG80I, allows one to eliminate some 
of the arbitrary nature associated with the ill-defined cavity radius.1 

(52) Dougherty, R. C; Roberts, J. D. Org. Mass Spectrom. 1974, 8, 77. 
(53) Warshel, A. Modern Theoretical Chemistry; Segal, G., Ed.; Plenum: 

New York, 1977; Vol. 7. 
(54) Yamamoto, T. J. Chem. Phys. 1960, 33, 281. 
(55) Chandler, D. J. Chem. Phys. 1978, 68, 2959. 
(56) The approximation involved in keeping Hn in solution at its gas-phase 

value does neglect off-diagonal contributions of the solvent-induced dipoles 
(that can be evaluated by an exciton-type formalism). Similarly, we neglect 
in our formulations electronic overlap (and therefore charge transfer) between 
the solvent and solute molecules. It is also important to point out that the 
neglect of the solvent effect on the off-diagonal terms is common to all works 
using gas-phase potential surfaces. However, the VB treatment does not 
neglect the first-order effect on the solute Hamiltonian (this seems to be the 
dominant effect of the solvent on the solute charge distribution). 

(57) Warshel, A.; Weiss, R. M. J. Am. Chem. Soc. 1979, 101, 6131. 
(58) Slater, J. C. Quantum Theory of Molecules and Solids; McGraw-

Hill: New York, 1963; Vol. 1. 
(59) Coulson, C. A.; Danielsson, U. Ark. Fys. 1954, 25, 245. 
(60) Salem, L. Electrons in Chemical Reactions: First Principles; Wiley: 

New York, 1982; p 228. 
(61) Montgomery, J. A.; Chandler, D.; Berne, B. J. J. Chem. Phys. 1979, 

70, 4056. 
(62) Bernardi, F.; Robb, M. A. J. Am. Chem. Soc. 1984, 106, 54. 
(63) Shaik, S. S. J. Am. Chem. Soc. 1981, 103, 3692. 
(64) Huheey, J. E. Inorganic Chemistry, 2nd ed.; Harper & Row: New 

York, 1978. 
(65) Benson, S., private communication. 
(66) Grimmeimann, E. K.; Tully, J. C; Helfand, E. J. Chem. Phys. 1981, 

74, 5300. 
(67) Bennett, C. H. In Algorithms for Chemical Computation; Christof-

ferson, R. E., Ed.; American Chemical Society: Washington, DC, 1977. 
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Figure 9. (a) Relationship between the activation free energy Ag* and 
the reaction free energy AG0. (b) Dependence of the "linear" correlation 
coefficient dAg*/dAG0 on AG0. 

For X = ('/2. V2) w e n a v e charges of-0.5 on each of the Cl atoms, 
separated by a distance R. The corresponding energy is given 
by1 

AG801(Z?) + 3320,2,/Z? =* AG801(J? = ») + 3 3 2 C g 2 / * * « 
AG801(Z? = ») + (332/4)/80Z? e* AG801(Z? = ») (42) 

AG801(Z? = °°) can be estimated with the scaled a of eq 41 as 

AG801(Z? = Co) = -166(6,2 + Q?)/a = 

-(166/2)/(-166/AG80 l(Cl-)) = AG s o l (Cn/2 (43) 

This gives 

AG801(Z?) =* AG801(Cl")/2 - 332/4Z? = -35 - 332/4Z? (44) 

with 

AG(X*) = AG(X = '/2) - AG(X = 1) = 
AG801(Z?*) - AG801(Cl-) = -AG801(Cl-)/2 - 332/4Z?* (45) 

With Z?* = 4.6 A, one obtains AG(X*) = -53 - (-70) = 17 
kcal/mol as compared to the value of 16.6 kcal obtained by our 
mapping potential. The mapping free energy AG(X) is converted 
by eq 21 to the actual ground-state free energy Ag(Ae), which 
is shown in Figure 8. The calculated activation barrier, Ag*, is 
similar to the experimentally observed barrier (AgaM* = 26.0 
kcal/mol, Agobsd* = 26.6 kcal/mol). As mentioned before,16 the 
difference between the barrier in solution and in the gas phase 
is largely due to the corresponding change in solvation free energy. 
Another important factor in determining the free energy surface 
for this reaction is the influence of the solvent polarization on the 
solute charge distribution. This point will be discussed below. 

With a reasonable model we can explore several fundamental 
issues. In particular, it is interesting to examine the dependence 
of the activation free energy on the free energy of the reaction. 
The EVB method allows one to address this problem in a very 
convenient way. For instance, changing a(2) in eq 11 changes in 
a parametric way the free energy difference, AG0, between the 
reactant and product states. Evaluating the Ag* that corresponds 
to the various AG0's allows one to study the underlying free energy 
relationship on a microscopic level.16c,18b'c Such a study is described 
in Figure 9, which presents the calculated microscopic dependence 
of Ag* on AG0 for an hypothetical system where all the potential 
parameters except a(2) are set at their values for the Cl" + CH3Cl 

—• ClCH3 + Cl" system. This corresponds to a variation of the 
electronegativity of the atom while its ionic radius is kept constant. 
Our computer experiments provide a convenient data base for 
examination of various phenomenological models. In particular, 
it eliminates the need for finding a common denominator for 
experiments with different A"s and Fs , as the change of ligands 
involves changes in many parameters (e.g. Zf12), which makes a 
direct comparison to a macroscopic model far from being simple. 
For example, the corresponding analysis would require a careful 
comparison to the relevant gas-phase experiments in order to 
extract the solvent contribution. 

As seen from the figure, the dependence of Ag* on AG0 is quite 
monotonic and can be described as (46), where 8 changes from 
around 1 for very endothermic reactions to 0.5 for AG0 ==; 0 and 

AAg* = 0AAG0 (46) 

then to O for very exothermic reactions. The change of 8 from 
around 1 for the case of a productlike transition state to around 
O for reactantlike transition state has been predicted by many 
phenomenological approaches.21-25 However, the main point in 
our approach is not in finding the universal 8, but examining its 
microscopic nature. 

A formal starting point can be provided by eq 25. Obviously 
this equation is useful for estimating Ag* only if the system is 
nearly harmonic and if Ag* is close to AF*. In this respect, it 
is important to mention that our Ag1 and Ag2 surfaces are not 
equal to «, and t2. The Ag1 and Ag2 surfaces (Figure 7) are 
uniquely defined in terms of the mapping procedure (see eq 22) 
and represent free energies. In the range of validity of the linear 
response theory, where Ag1 and Ag2 can be approximated by 
harmonic functions, one can exploit the fact that Ag1 = Ag2 at 
the hypersurface where «2 = ej and write (47a), where ZZ12 is the 

Ag* =* (AG0 - a)1/Aa - Z712
20Yo)/a - Hn(X*) (47a) 

|AG0| < Aa 

average of ZZ12 at the indicated coordinate. The parameter a is 
now defined in terms of the curvature and shift of the surfaces 
Ag1 and Ag2 (see Figure 7) and is given by eq 24 when the 
harmonic expansion of eq 23 is valid. Outside the range of eq 
47a we obtain (47b) and (47c). 

Ag' =* AG0 AG0 > Aa (47b) 

Ag' ^ O AG0 < -Aa (47c) 

The correlation parameter 8 is obtained from eq 47 by 

8 = AAg*ZAAG0 =* (AG0 - a)/2a (48) 

Equation 47 without the perturbation term ZZ12
2/a is identical 

with Marcus' equation for methyl transfer reactions (see ref 23 
and 25). The problem is, however, that eq 47a is not exact, nor 
is it based on a fundamental microscopic principle. In fact, the 
Ag curves will not be harmonic for systems that do not obey the 
linear response approximation. Furthermore, the effective pa­
rameter a is not reproduced correctly by macroscopic estimates 
(see ref 16c). Even so, the solvation of ions by polar solvents can 
be approximated by the linear response theory, and the Ag curves 
can befitted to a scaled quadratic relationship.160 Since the error 
range in the SN2 simulation is larger than in our previous study16c 

of electron-transfer reactions (where H12 =* O), it is hard to judge 
conclusively from Figure 7 how quadratic (or nonquadratic) the 
Ag curves are; longer simulations will be required to explore this 
question. Nevertheless, it appears from the present calculation 
that eq 47 gives a reasonable approximation provided that the key 
parameter a is obtained from microscopic calculations, and not 
from phenomenological macroscopic relationships where the cavity 
radius is not uniquely defined. In this respect, it is important to 
mention that a can be estimated quite reliably by the same ap­
proach that led to eq 43. That is, the AG(X*) for our mapping 
potential is given by the intersection of the Ag curves. For 
harmonic Ag curves one obtains (49). Using this equation and 
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Figure 10. Dependence of the activation barrier Ag' for the symmetric 
exchange reaction X-CH3X — XCH3X" on the solvation energy of X". 
In order to extract the pure solvent contribution, we changed only the 
van der Waals solute-solvent parameters of the indicated idealized ions 
(X")* and kept the intermolecular solute potential unchanged. 

eq 45 for exchange reactions (AG0 = 0) gives (50). This powerful 
relationship overcomes the need to use the ill-defined cavity radius. 

AG(X*)sol =* (a - AG0)
2/Aa 

a = -2AG501(X") - 332/i?* 

(49) 

(50) 

The role of the solvent and its contribution to the overall re­
organization energy can be examined by simulating several ex­
change reactions (X - + CH3X - • XCH3 + X") where the ionic 
radius of the negative ion is changed in a parametric way. Such 
a study is described in Figure 10. The figure shows the correlation 
of the calculated Ag* with the calculated reorganization energy 
for three exchange reactions. In these three reactions the same 
intramolecular potential is used, while the ionic radius of X" is 
modified to reproduce the observed solvation free energies of P , 
Cl", and I". Employing the same intramolecular potential in all 
three cases guarantees that the entire change in Ag* is due to 
solvation effects. A comparison of Figure 10 to direct experimental 
information requires one to consider the change in Ag* between 
the solution- and gas-phase reactions and to take into account the 
change in a due to the change in the X"—X distance. This in­
teresting taks is not, however, within the scope of the present study. 
Hence, we use this calculated correlation as an "experimental" 
microscopic check of the validity of eq 47. That is, for exchange 
reactions (AG0 = 0) one obtains (51), which gives (52). The 
validity of this correlation is examined in a preliminary way in 
Figure 10. 

Ag* = a / 4 - Hn - Hn
2Za 

AAg*ZAa = y, + Hn
2Za2^ % 

(51) 

(52) 

(b) Effect of Solvent and Solute Polarizabilities. A consistent 
treatment of chemical reactions in solution requires one to take 
into account the effect of solvent polarizability. In order to 
examine the importance of this factor, we repeat the calculations 
with a model that does not include induced dipoles. Both models 
are parameterized to give the same solvation free energy for the 
Cl" ion, by adjusting the O—Cl" van der Waals radius. The results 
of the calculations are summarized in Figures 7 and 8. It appears 
that the inclusion of the solvent-induced dipoles reduces the re­
organization energy by about 3 kcal/mol. This is due to the 
stabilization of the nonequilibrium excited diabatic states (e2 for 
mapping with Ae > 0 and S1 for Ae < 0) by the solvent-induced 
dipoles. The small induced-dipole effect might seem to justify 
neglecting the solvent-induced dipoles. This, however, would be 
permissible only for reactions that involve a charge transfer over 
a small distance. The same type of calculations for a hypothetical 
charge separation reaction (ClCl —• Cl-Cl+ with 5-A charge 
separation distance) gave a reduction of =*30 kcal/mol as a result 
of including the solvent-induced dipoles. 

Another point that requires special attention is the effect of 
the solvent on the solute polarization. While it is possible to use 
gas-phase calculations to obtain the charge distribution of the 

ve-t Cccr; 

Sdve-t Cccr; :.",.. 
Figure 11. Hypothetical free energy surfaces for (a) the solvent-driven 
and (b) the solute-driven cases. 

Figure 12. Schematic description of the role of the solvent fluctuations 
in controlling the activation barrier for the solute coordinate. The re­
action occurs only when a solvent fluctuation stabilizes the reactant state 
and reduces the barrier along the solute coordinate. 

solute as a function of nuclear coordinates only, we feel that a 
more physically realistic picture of the reaction is obtained if the 
charge distribution is allowed to be changed by the (quite large) 
field generated by the solvent dipoles. The effect of the solvent 
polarization on the solute charges is the major factor in cases of 
charge separation reactions (e.g., Figure 1) and can be significant 
for SN2 reactions. The demonstration of the importance of this 
effect is left to subsequent works on charge separation reactions. 
For the SN2 reaction this point is demonstrated in the next section 
by simulating dynamical effects with and without the solute po­
larization. 

(c) Dynamical Effects and the Key Role of Solute-Solvent 
Coupling. The emphasis in our study of dynamical effects is on 
the nature of the solute-solvent coupling. We start by considering 
the nature of the rare fluctuations that lead to a reactive events. 
In particular, it is important to determine whether the reactive 
fluctuations are driven by solvent fluctuations, by solute fluctu­
ations, or by concerted solute-solvent fluctuations. This funda­
mental question (see related discussion in ref 26) is addressed in 
Figure 11. In the "solvent-driven" limit, the reaction does not 
occur until the solvent reaches a polarization that stabilizes either 
the charge distribution of the transition state or the product state 
and the activation barrier along the solute coordinate becomes 
small. In the "solute-driven" limit the solute changes its con­
figuration (and charge distribution) to that of the transition state, 
while the solvent responds by moving toward its transition-state 
polarization. If the system follows one of these limiting cases, 
it is possible to consider a simplified approximation for the reaction 
rate. For example, in the class of solvent-driven processes, one 
can use the conceptual model given in Figure 12 and in our 
previous studies (Figure 4 of ref 18a), where the activation barrier 
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Figure 13. Nature of typical downhill trajectories for the Cl" + CH3Cl 
—• ClCH3 + Cl" exchange reaction. The system was initialized by 
equilibrating the system at its transition state using t = 0.5^1 + 0.5(2-
After the initial equilibration the potential was changed to the actual 
ground-state potential, and the system was allowed to freely evolve in 
time. The position of the solute coordinate is plotted as a function of the 
solvent coordinate, with the time entering in an implicit manner since as 
one moves along the curves to the right time is increasing. (This is 
actually a projection of a three-dimensional graph onto two dimensions 
with the time dimension supressed; compare to Figure 15.) The solute 
coordinate R is defined as R = 0.17(̂ i>)1''2(4>2 - A1), where n is the 
reduced mass (M = MaMc/(Ma + M0) (amu), v is taken as 800 cm"1 

(which is approximately the stretching frequency of a C-Cl bond), and 
the meanings of A1 and b2 (A) are given in Figure 5. The solvent coor­
dinate Q is defined as Q = (2A(c[/hv)l/2, where v = 100 cm"1 is the 
effective frequency obtained from the power spectrum of Aeel and Aetl 
= (e2 ~ ei)ei is the electrostatic contribution to the energy gap between 
the two states used in our calculations. 

along the solute coordinate fluctuates as a result of the solvent 
fluctuations. In this way one can obtain the activation free energy 
for the reaction by evaluating the probability of the solute reaching 
its transient transition state, R*(Q), over the solvent fluctuations.163 

That is 

exp[-Ag*ffl =* J e x P t - A £ ( * o - **. G(O)ZJ] d/ (53) 

In fact, this approximation might be valid over a wider range (see 
ref 16a and 18a), since eq 53 can be thought of formally as the 
result of a calculation in which the solute is constrained to stay 
at Ra and the probability of reaching R* is evaluated by an 
umbrella sampling procedure. However, one would expect to 
obtain different transmission factors with eq 53 (and varying 
degrees of convergence) in the different limits of the solute-solvent 
dynamical coupling. 

Regardless of the exact relationship between the nature of the 
reactive trajectories and the validity of eq 53, one would like to 
understand the dynamics of the solute-solvent coupling from a 
mechanistic point of view. Furthermore, different limits may show 
different behavior in terms of isotope effects and dependence on 
the dielectric relaxation of the solvent. A convenient way to 
explore the complicated nature of the reactive trajectories is 
provided by propagating trajectories downhill from the transi­
tion-state region. The time reversal of these trajectories generates 
the relevant set of reactive trajectories. The downhill trajectories 
are generated by using the mapping potential with X = X* to 
prepare the system in the transition-state region and then initiating 
a relaxation process by changing the potential of the system from 
em< to the actual ground-state potential £g. Figure 13 describes 
typical downhill trajectories. As seen from the figure, the situation 
in our model reaction is not simple. Some trajectories seem to 
be solvent driven and some concerted or solute driven. In all cases, 
however, the solvent coordinate does play a central role. Some 
aspects of the solvent fluctuations will be explored below, but a 
more complete examination would require running many more 
downhill trajectories as well as an evaluation of the actual free 
energy along the solute and the solvent coordinates. 

While the exact value of (Q{t)) requires propagating much 
more downhill trajectories, it is instructive to examine the dynamics 
of the average coordinate by the acf of Q(t) and the linear response 
approximation of eq 37. To do this, we evaluate the acf of Q(t) 
(Figure 14). The simulated autocorrelation time is about 0.23 

0 ,30 0 .60 0.9O 1.20 
T i m e ( p s e c ) 

Figure 14. Autocorrelation function (solid line) of the energy gap, A«e|, 
for the Cl" + CH3Cl -» ClCH3 + Cl" reaction, which was propagated 
at the transition state on the mapping potential 0.5^1 + 0.5e2- The 
simulated correlation function is compared with the function exp(-//rL) 
(- - -), where TL is the macroscopic dielectric relaxation time of the solvent 
(TL = 0.23 ps). 
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Figure IS. Time dependence of the solvent coordinate, Q, for the 
downhill trajectories of Figure 13. The (-••-) lines represent the actual 
simulation results while the (—) and (•••) curves are the estimated (Q) 
from the model of eq 54. The (—) curve represents a model with con­
sistent solute-solvent coupling while the (•••) curve is a result of an in­
consistent calculation; see text for details. 

ps in good agreement with the estimate44 of 0.23 ps for the solvent 
longitudinal dielectric relaxation time rL (a simulation of the 
macroscopic dielectric relaxation time of our model is required 
in order to examine the exact relationship between TL and TQ). 
With the simulated (Q(O) Q(t)) we evaluated (Q{t)) using a 
simplified version of eq 39 (eq 54), where (M(O)caicd ' s the average 

(G(O) = ( g m a x / / w ) f'(G(O) G U O X M ( J - 0>«icd d«' (54) 

of the calculated solute dipole moment for the downhill trajectories. 
The calculated result is in good agreement with the simulated time 
dependence of (Q{t)) in Figure 15. More systematic studies will 
be required to examine the validity of our approach. It is clear 
however from the analysis presented in eq 39 and 40 that the time 
dependence of (GM) ' s affected by the fact that the solute dipole 
is formed in a finite time. 

Although the present study explores the nature of the reactive 
fluctuations only in a preliminary way, it provides a clear indication 
of the importance of the solute polarization effects. This point 
is described in Figure 16, which compares typical downhill tra­
jectories with and without consistent solute polarization. In the 
first trajectory we use the correct ground-state surface (£g), while 
in the second case we evaluate the solute charge by using the 
gas-phase EVB Hamiltonian (excluding the solute-solvent in­
teraction term). The solute charge distribution calculated in this 
way (Figure 17) is determined entirely by the solute geometry 
and does not reflect the polarization of the solute by the sur­
rounding solvent. Thus, the dynamics of the corresponding tra­
jectories reflects the interaction of the solvent with the gas-phase 
charge distribution of the solute. As seen from Figure 16, the 
trajectories of the polarized solute move toward the relaxed ground 
state faster than those of the unpolarized solute. The reason is 
quite obvious: When the polarization effect is included, the 
magnitude of ix increases from zero to the fully polarized value 
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Figure 16. Time-dependent solute coordinate, R, in a typical downhill 
trajectory for simulations with (—) and without (•••) the solute. The 
figure demonstrates the importance of consistent solute-solvent coupling. 
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Figure 17. Charge on the attacking chlorine atom as a function of time 
for the trajectories given in Figure 13. (—) and (•••) indicate simulations 
with and without including the solvent in the solute Hamiltonian. 

faster than when the polarization effect is not included. The larger 
\x, is, the stronger the relaxation force on the reaction field. The 
importance of this effect is also shown in an instructive way in 
Figure 15, which compares the results of the approach for the {n) 
calculated with and without the effect of the solute polarization. 
As seen from the figure, the solvent responds in a slower way in 
the inconsistent treatment. 

IV. Concluding Remarks 

Computer simulation approaches can provide detailed micro­
scopic insight into chemical processes in the condensed phase. 
However, the exploitation of such approaches in a consistent and 
systematic way is far from being trivial. In particular, it is not 
clear how to incorporate both the solute and the solvent in the 
quantum mechanical calculations of the reacting system. Cal­
culations that explicitly include all degrees of freedom of both 
solvent and solute are still well beyond the capabilities of the 
current generation of supercomputers. On the other hand, the 
use of a rigorous solute gas-phase Hamiltonian does not provide 
a consistent alternative to this problem (see Figure 1). Thus, it 
is important to develop and examine more uniform approximations 
that capture the main coupling between the solute and the solvent. 
The EVB approach described here and in our previous stud-
jes4,i6,i8,i9 0ffers a practical and consistent way of incorporating 
the solvent in the solute Hamiltonian. The effectiveness of this 
method is demonstrated here in a combined study of the energetics 
and dynamics of the SN2 class of charge-transfer reactions. 

A convenient combination of the EVB method and a free energy 
perturbation technique allows us to explore fundamental aspects 
of free energy relationships on a microscopic level. The method 
is used to examine the validity of Marcus type relationships for 
adiabatic charge-transfer reactions. It is found that the contri­
bution of the solvent to the activation barrier can be estimated 
qualitatively with such relationships. This is due to the fact that 
the relevant free energy functionals can be approximated by 
quadratic functions, which have the same apparent dependence 
on the solute charges as the one obtained from macroscopic di-
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electric theories (provided that the reorganization energy is not 
evaluated using an arbitrary cavity radius, but either by micro­
scopic calculations or by empirical scaling using eq 50 and observed 
solvation energies). This does not imply, however, that the ma­
croscopic theory is rigorously valid. The previously used ma­
croscopic models of Marcus23 and Hush24 evaluated free energies 
by using macroscopic models that constrain the electrostatic free 
energy to change along the reaction coordinate. Here, on the other 
hand, we use the potential energy of the constraint Hamiltonian 
to drive the system and calculate the relevant free energy from 
the corresponding potential energies. The two approaches are 
clearly not indentical; the present one is more rigorous since it 
actually evaluates the relevant free energies from first principles. 
Using the microscopic approach should give one (when the con­
vergence error is reduced) the ability to explore the basic derivation 
of the macroscopic approaches and attack outstanding problems, 
such as the nature of the difference between the Marcus23 and 
Hush24 points of view. 

The simple incorporation of the solvent field in the solute 
Hamiltonian is one of the key advantages of the present treatment. 
Inclusion of the solute-solvent coupling, which is missing in most 
other approaches, is more than a pedagogical exercise. While in 
the SN2 class of reactions the effect of the solvent on the energetics 
and dynamics is rather small, it becomes a huge effect in charge 
separation reactions (e.g., proton-transfer processes). 

The present work explores some dynamical aspects of an SN2 
reaction, emphasizing the solute-solvent coupling. An examination 
of the adiabatic limit reveals a nonlinear coupling, a consistent 
treatment of which might be essential for reliable simulation of 
charge transfer dynamics. It appears that the solvent response 
function is determined by both the solvent dielectric relaxation 
time and the solute polarization time. Examining this point with 
the linear response approximation provides some interesting insight 
into the dynamics of the solvent. However, several major issues 
are left open. In particular, it would be interesting to find out 
(by running many more downhill trajectories) whether or not the 
solvent reactive fluctuations, which are determined by the actual 
many-dimensional potential surfaces, can be reliably approximated 
by one-dimensional dynamics on the corresponding free energy 
functionals. Such an assumption, which is implicit in most of the 
current formal studies, has not been derived rigorously from first 
principles. 

In concluding this paper we point out that despite the significant 
progress being made in computer simulation approaches, one can 
still benefit greatly from the insight provided by phenomenological 
models. The results of the simulation studies can be used (in 
conjunction with the available experimental information) to ex­
amine and to "scale" these phenomenological models. In this 
respect, we find the EVB method particularly useful in providing 
a convenient connection between the simulation studies and the 
relevant free energy functionals. More studies in this area will 
be reported in subsequent works. 
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Appendix A 
The coupled equation of motion for the effective solute-solvent 

coordinate depends of course on the definition of these coordinates. 
A convenient definition is provided by the Q and R of section III. 
With this definition and the potential for Q in eq 30 we can write 
(Al), where A\t) is a random force and Q = (wgojg/h)]/2Q'. 
Approximating JQ by a 5 function (7 = JQ d(t)) gives (A2), where 
A = (<I>Q/'HmQyI2A' and the mass w e can be found by the 
equipartion relationship (A3). 

IQQ' = -£mQyQ(t - r) Q\r) Ar - dV/dQ' + A\t) (Al 

Q = -IQQ - (o>Q/h) dV/dQ +Ait) 

mQ = k^T/(Q'1) 

(A2) 

(A3) 
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The friction term can be obtained from the acf of Q by41 (A4), 
and A(t) is related to y0 by the fluctuation dissipation theorem.41 

7 e = (kBT/me)( JJ(QXO) QV)) d»)"' = 

(*„7<Vk)[ J^"<6(0)6(0>d/1 (A4) 

We can also use the properties of Brownian harmonic oscillator45 

to relate 7 2 to the dielectric relaxation time of the solvent. That 
is, the autocorrelation time of the reaction field, %R, and therefore 
Q (see eq 26) is given (within the model of Nee and Zwanzig42) 
by the longitudinal relaxation time, TL, of the solvent. Although 
the microscopic nature of the first few solvation shells is likely 
to give somewhat different relaxation time, we can still use the 
approximation (A5), where O)1

2 = O)2
2 - (72

2 /4). 

TL °* TQ = J0" (2(0) 2(0) df/(G(0) 2(0)) = 

fJe~>M cos («,0 + ^ - sin («,/) J = 7 e / V (A5) 

The friction term can now be expressed as 

Tg = UQ1TQ 

Thus we have (A6). Similarly, we can write the approximated 
equation of motion of R as (A7), where we assume that the main 
friction and random force contribution to R comes through the 
dependence of Eg on Q. 

Q = -^Q2TQQ ~ UQ1Q -

2(uQ/h)(naQ/H^XAQ)[OH/dQ)Q + M] + A(t) (A6) 

R = -yRR-(wR/h)dEg/dR + AR(t) (A7) 
• 
It should be instructive to compare the numerical results of eq 

A6 and A7 to those of the actual many-dimensional simulations. 
It is also interesting to find approximated analytical solutions for 
these equations. For example, one can consider the Smoluchowski 
equivalent of eq A6 (with the diffusion constant DQ = kBT/ 
(WgO)2

2T2)) (eq A8), where P(Q, t) is the probability of finding 

|/>(2, 0 = ( > W » JQ{D(Q)(^ + 7 ^ ) ) PiQ. t) 
(A8) 

the system using the corresponding first passage approximation,43 

which reduces to Kramer's derivation.46 In the high barrier case 
one obtains (A9) (see related derivations of Zusman,48 Calef and 
Wolynes," and Ovchinnikova47), where U)2* is the curvature of 
Ag at the transition state and DQ is the average diffusion constant. 

kQ(R) =* 

( f t /wgwe) ' / 2 ^ ] j*_°de[exp(-Ag(G, Rm/Z]-1]'1 =* 

(O)6Va)2)(ITTT2)-
1 exp(-Ag*(R)0) (A9) 

The problem is, however, that in contrast to the simple case 
of diabatic electron transfer we deal here with a strong coupling 
of Q and R as well as with the complicated form of /i. A rather 
rough approximation can be obtained for the solvent-driven case 
by taking k as the value /CQ(J?) at the ground-state value of R. 
More sophisticated approximation may be obtained by introducing 
the time-dependent effect of R in eq A7 as a memory kernel (see 
related treatments in ref 13a and b). Possible manipulations of 
eq A9 will be examined in subsequent work. In the present study 
(section IIIC) we explore the solute-solvent coupling by using the 
linear response theory. 

Appendix B 
The relation between the rate constant and the fluctuations of 

the time-dependent energy gap can be explored by exploiting some 
of the formalism used in the diabatic limit.16b The idea is to find 
the number of times, n(X*, T), the system reaches the transition 

state during a given time r by finding functionals whose stationary 
points occurs at the transition state. To do this we start by 
expressing the forward rate constant as (Bl). To find n(X*) we 
use the function (B2), where Ae = e2- «i a n d ( )g, designates an 
average over a potential given by (B3). The reflecting boundary 

k = (n(X\ T)/T)F (Bl) 

W(T) = <|j;Texp[(-//ft J A 6 ( O d ?f)g , (B2) 

E1, = Eg X<X* (B3) 

Eg, = Eg(X')[\ + exp[(X - X*)]] X> X* 

of this potential guarantees that the trajectories of the system will 
spend almost all of the time at the reactant state. The same type 
of functional was in fact used in the diabatic limit16b using an 
average over ^1. However, the actual relation of W(T) to the rate 
constant is much less obvious in the adiabatic case. Here we 
cannot follow the diabatic derivation16b and assume that the system 
stays in the state \p{ throughout the investigation time. However, 
we can exploit the fact that the functional W(r) still provides an 
estimate of n(X*, T), since the rapidly oscillating integral in eq 
B2 contributes to W(T) only when At = 0. Thus, we can write 
(B4), where the factor T(X*) - \2ich/Ae\ (which is related to the 

W(T) = (\ E J cxp[-i/h J Af(O d/'J d< ) = 
«(A*,r) 

<| E r (**) ' /V<f>r (B4) 

Landau-Zener factor in the diabatic derivation) is obtained as 
in ref 16b by the stationary-phase approximation, while the phase 
<t>j is given by the integral of the energy gap between tj to tj+1 (see 
ref 16b). Following the argument of ref 16b and the related 
argument of Feynman49 about phase cancellation between different 
trajectories, one can write16b (B5). Using eq Bl and B5 we obtain 
(B6). The factor F still appears in our expression since the 

n(X',,) 
W(T) =* < Y. T(X*))f « n(X\ T)(T(X*))g (B5) 

j= i 

k = (W(T)/T)F/(T) (B6) 

stationary-phase approximation of eq B4 does not allow trajectories 
to bounce back after crossing the transition state. This treatment 
does not change the results of the diabatic treatmentl6b where the 
surface crossing probability is very small so that most trajectories 
that cross never come back (as argued in ref 57 the fraction of 
trajectories that return is 6/(2 - 6), where 6 is the surface crossing 
probability). 

Equation B6 allows one to exploit the formal properties of W(T) 
using its second-order cumulant expansion (see ref 16b) that gives 
(B7), where k{T> designates the second-order approximation for 
k and Ae = u + (Ae). (Note that, in contrast to the diabatic case 
of ref 16b, we do not perform the average over the distribution 
function of C1 or e2.) 

k{2) =* ( J J d / exp[(i/ft)<A«>/ + y(t)])F/(T) (Bl) 

7(0 = (-\/h)2£dt'(t -O(" (0 ) K(O)8 

Equation B7 provides a direct way for exploring the relationship 
between the rate constant and the solvent dielectric relaxation time, 
which determines the acf of Ae. In fact, if we write the acf of 
u(t) as (B8), then an analogous derivation to that of ref 16b gives, 
for cases with low Ag* where (Ae) =* 0 and TU « h/(2Ak3T) 1^2, 
the relationship (B9). The difference, however, from the diabatic 

(u(0) u(t))g = 2AkbTe-'lT* (B8) 

fc(2> « (H2ZAk3TT11)F/(T) (B9) 
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case of ref 16b is the range of validity of eq B9. In the adiabatic 
case the amplitude A is much smaller than in the diabatic case 
(where A is given by the reorganization energy a). Thus, eq B9 
is expected to be valid in the adiabatic cases on a wider range of 
TU than in the diabatic cases. 

The acf (u(0) u{t))g can be obtained directly by simulations. 
However, significant formal insight can be gained by examining 
analytical autocorrelation functions for a given effective equation 
of motion for u(t). This point will be explored in subsequent 
publications. 

How Does a Dication Lose a Proton? 
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Abstract: A detailed study of the mechanism by which a proton is lost from a dication reveals that such processes are more 
complicated than is often assumed. In many cases, a deprotonation reaction is best viewed as a two-stage process: Initially, 
the departing unit is better described as a hydrogen atom than as a proton and only later, at some point further along the 
decomposition pathway, does a spontaneous electron transfer take place to form the eventual products. Consequently, it is 
found that, contrary to conventional wisdom, restricted Hartree-Fock (RHF) theory does not necessarily offer a satisfactory 
theoretical treatment of such fragmentations. The circumstances under which it is appropriate to use RHF or UHF procedures 
(and the Moller-Plesset perturbation theories based on these) are examined in light of a recent model for dication dissociation, 
and it is found that the A parameter of that model is a useful aid in choosing the theoretical formalism appropriate to a given 
dication. 

The chemistry of gas-phase dications has received considerable 
attention in recent years, from both theoreticians and experi­
mentalists.1 Such species are usually thermodynamically unstable 
with respect to dissociation into two monocations, but significant 
kinetic stability may result if sufficiently high barriers impede 
fragmentation. For this reason, the accurate assessment of such 
barriers is of paramount importance in the theoretical investi­
gations of dications. 

One ubiquitous fragmentation route for dications is proton loss 
(eq 1). The observation that the transition structure for such 

Table I. Calculated Bond Lengths (A) and Total Energies 
(Hartrees) of the Equilibrium and Transition Structures of AlH2+ 

and Corresponding Barriers for Deprotonation (kJ mol"1)0 

AH2+ — A+ + H , + (D 
reactions often occurs very late along the reaction path has recently 
been rationalized3 in terms of a model2"4 in which the potential 
curve for the fragmentation is viewed as arising from an avoided 
crossing between an ion-ion repulsive state, which correlates with 
A+ + H+, and an ion-induced-dipole attractive state, which 
correlates with A2+ -I- H. This model may be used, for example, 
to show that if the second ionization energy of A is a little larger 
than 13.6 eV (the ionization energy of H), a late-transition 
structure for proton loss may be anticipated. 

Further inspection of this model can give considerable insight 
into the dissociation process and reveals certain features that have 
previously been overlooked. In particular, if AH2+ is a closed-shell 
singlet species, it is conventionally assumed5 that the proton loss 
may be treated within the framework of restricted (RHF), as 
opposed to unrestricted (UHF), Hartree-Fock theory. However, 
as we show in this paper, the choice between these alternatives 
is less straightforward than is normally realized, and indeed, for 
late-transition structures, RHF ought not be used. 

(1) For recent reviews, see: (a) Koch, W.; Maquin, F.; Stahl, D.; Schwarz, 
H. Chimia 1985, 39, 376. (b) Koch, W.; Schwarz, H. In Structure/Reactivity 
and Thermochemistry of Ions; Ausloos, P., Lias, S. G., Eds.; NATO ASI 
Series; Reidel: Dordrecht, The Netherlands, 1987. 

(2) Dorman, F. H.; Morrison, J. D. J. Chem. Phys. 1961, 35, 575. 
(3) Gill, P. M. W.; Radom, L. Chem. Phys. Lett. 1987, 136, 294. 
(4) Gill, P. M. W.; Radom, L. Chem. Phys. Lett., in press. 
(5) For example: Schleyer, P. v. R. Adv. Mass Spectrom. 1985, 287. 

RHF 
RMP2 
RMP3C 

RMP4C 

RCISD'' ' 

TCSCF' 

UHF 
UMP2 
UMP3C 

UMP4< 
UCISD'''' 

'«. 
1.614 
1.641 
1.653 
1.660 
1.669 

1.671 

1.645 
1.641 
1.653 
1.660 
1.669 

^ 
-241.56264 
-241.59518 
-241.59439 
-241.597 29 
-241.599 80 

-241.589 99 

-241.562 84 
-241.59518 
-241.59439 
-241.597 29 
-241.599 80 

'TS 

3.009 
3.118 
3.169 
3.142 
3.206 

3.415 

3.589 
3.309 
3.276 
3.250 
3.206 

E-ts 

-241.51115 
-241.54900 
-241.545 43 
-241.549 39 
-241.55029 

-241.53045 

-241.52068 
-241.539 53 
-241.533 97 
-241.535 72 
-241.55023 

barrier* 

135 
121 
129 
126 
130 

156 

111 
146 
159 
162 
130 

"6-3IG* basis set used throughout. E15 - £«,- 'Frozen-core ap­
proximation used. d Corresponds to full CI for the valence electrons. 
'Aa and 5a molecular orbitals were active. 

Method and Results 
A modified version6 of the GAUSSIAN 82 system of programs7 was used 

to carry out standard ab initio calculations8 on AlH2+ and N2H6
2+ with 

the 6-3IG* basis set, both for the equilibrium structures and for the 
transition structures for deprotonation. The equilibrium and transition 
structure bond lengths in AlH2+ were optimized at the Hartree-Fock 
(HF), second-, third-, and fourth-order Moller-Plesset perturbation 
theory (MP2, MP3, and MP4, respectively), and singles-and-doubles 
configuration interaction (CISD) levels, within both the spin-restricted 
(leading to RHF, RMP, and RCISD) and spin-unrestricted (leading to 
UHF, UMP, and UCISD) frameworks. The bond lengths were also 
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